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ABSTRACT

This document presents the mathematical specifications of
Release 4.0 of the Attitude Determination Error Analysis
System (ADEAS), which provides a general-purpose linear
error analysis capability for various spacecraft attitude
geometries and determination processes. The analytical
basis of the system is presented, and detailed equations are
provided for both three-axis-stabilized and spin-stabilized

attitude sensor models.
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SECTION 1 - INTRODUCTION

The Attitude Determination Error Analysis System (ADEAS)
provides a general-purpose linear error analysis capability
for various spacecraft attitude determination processes.
ADEAS does not process sensor data but simulates the atti-
tude determination logic and computes the resulting attitude
determination accuracy. The spacecraft attitude determina-
tion scenarios that can be analyzed by ADEAS are described

below:

° From low-altitude Earth orbits to International
Sun-Earth Explorer (ISEE)-3 type of Earth-Sun 1li-
bration point orbits

) Spin-stabilized or three-axis-stabilized spacecraft
attitudes

° Batch weighted-least-squares and sequential filter
attitude determination methods

® Sensor complements, which are subsets of Sun sen-

sors, Earth sensors, star sensors, gyros, and mag-

netometers.

These scenarios include most of the existing and anticipated
Earth satellite attitude determination systems. A posSible
exception is that attitude rate information is assumed
available for use in the propagation of satellite attitudes
in the multiframe method. The rate information is usually

provided by gyros.

The ADEAS system requirements are p:esented in Reference 1.
The detailed mathematical specifications for ADEAS are pre-
sented in this document. Section 2 presents the mathemati-
cal formulations of linear error analyses for batch and
sequential estimators. The formulations are general and not
limited only to attitude determination systems. Sections 3

1-1
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and 4 describe the attitude and sensor models included in

the program. Section 5 specifies the reference systems and

vectors used .u ADEAS.
Although many of the algorithms have been extensively re-

vised, this document is based in large part on Reference 2.
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SECTION 2 - FILTER SPECIFICATION

This section presents the specifications for error analysis
using batch and sequential filters. While ADEAS deals spe-
cifically with attitude determination, Section 2.1 presents

a widely applicable system model, and Sections 2.2, 2.3, and
2.4 derive general error analysis equations for batch and
Kalman filters. Sections 3 and 4 then deal with specializing
the general specifications to the cases of spin-stabilized
and three-axis-stabilized spacecraft.

2.1 SYSTEM MODEL

Let X be an N-dimensional vector that characterizes the sys-
tem under consideration. This state vector evolves in time

according to the following dynamic model:

x(t) = £(x(t), t) + u(t) (2.1-1)

where the dynamic noise u(t) is a Gaussian white noise proc-
ess with mean and covariance given by

E[u(t)]

]
o

E[E(t) GT(t')] Q, 8(t - t")

(E[...] denotes taking the expectation value.) X includes
all parameters of interest necessary to compute % even though
some parameters may have zero derivative. For spacecraft
attitude determination, X includes the spacecraft attitude
parameters and additional dynamic parameters such as gyro-
scope biases and alignments.
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The true value of the state vector is never exactly known
but is instead estimated by the state estimate vector, X,
This estimate evolves in time according to

i*(t) = £(x*(t), t) (2.1-2)

The state error vector given by

Ax(t) = x(t) - x*(t)

is assumed to always remain small, so linear error analysis

techniques may be used. To first order, then

Ax(t) = x(t) — x*(t)

F(x(t), t) - £(x*(t), t) + u(t)

— (2.1-3)
~ 8L (ry Ax(t) + u(t)
: ox
Integrating this formally gives
Ax(t) = &(t, t,) Ax(tg) + w(t, tg) (2.1-4)
where the state transition matrix ¢ is given by
oCe, ty) = 25y o, )
9x ' (2.1-5)
2-2

0450



and the random excitation vector ¥y by

t
w(t, ty) E_/r d(t, t') u(t') at' (2.1-6)

o

It follows from Equation (2.1-5) that ¢ obeys the group
property

Sty to) = &y, ty) ¢ty Ep) (2.1-7)
The random excitation vector satisfies the equation
Ylt, tg) = ¢(t, ty) wltg, ty) + w(t, &) (2.1-8)

A filter produces state estimates based on information ob-
tained from measurements made at discrete times. Let Y be

a measurement value obtained at time ti' In ADEAS, measure-
ments performed simultaneously are treated as independent
scalar measurements, so the times ti need not be distinct.
Measurements are related to the state vector by the following

measurement model: .

v, = 9;(x(t), B + vy (2.1-9)

0450



where P is a vector of measurement parameters and v, is a _
Gaussian white noise process with mean and covariance given

by

E[vi] =0
2] _ 2
E[\)i] = oi (2.1-10)
=0 for i # j

£[o;

Note that we will consider p to include the parameters neces-
sary for all possible measurements, not just those measure-
ments made at any specific time ti' For spacecraft attitude
determination, P would include all sensor alignments, biases,
scale factors, etc.

The functions g, are assumed to be known functions of impre-

cisely known arguments. Therefore, it is possible to com- ﬁ?;
pute expected measurement values by -
x = x* DX -
¥y} = g;(x*(t;), p*) (2.1-11)

where p* is a vector of estimated measurement parameters.
The measurement residual between the actual and computed

measurements is then

AYl = Yi - Y{ = gl(x(tl)l p) - gi(x*(ti)’ p*) + Vi
(2.1-12)
ag _ dg. _
i
z“'——'Ax(t:i) + — Ap + Vs
ox dp
2-4 i
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where AX and Ap = p - p* are both assumed small.

The function gi(i(ti), P) can be written as

g; (x(t;), P)

(1 + k.) h,(x(t.), p') + b, :
NS . 1 (2.1-13)

+

a; 51n(wi ti + wi)

where ki measurement scale factor error

sensor bias

o
]

aj = amplitude of orbit-related or other unknown
periodic error source

w. = frequency of periodic error source
y. = phase angle of periodic error source

The parameters ki' bi' a., w., and wi are assumed to depend

i i
only on the measurement type and not on the measurement time.
The frequencies w, and phases wi are assumed to be exactly

known.

The parameters ki' bi

measurement parameters; the vector p' contains the remaining

, and ai are a subset of the vector of

measurement parameters. The partial derivatives of the
measurement with respect to these parameters are especially
simple:

ag. _
g;i = h (X(t;), p') = g (2.1-14)
agi
3b. =1 - (2.1-15)
1
2-5
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9g.
5;% = sin (witi + wi) (2.1-16)

1l

The partial derivatives with respect to X and p' are derived
in Sections 3.3 and 4.3. 1In these sections, they are denoted
by 3F*/3X and 3¥*/8P rather than 3g/3% and 3g/3p.

2.2 ESTIMATION AND COVARIANCE ANALYSIS

It is usually not necessary to estimate all of the state
parameters. However, it is necessary to provide estimates
for those measurement parameters that are not exactly known.
Therefore, a filter should produce estimates for a set of
solve-for parameters including a subset of the state param-
eters and a subset of the measurement parameters. The re-
maining parameters are then consider parameters whose values
may contain errors that are not reduced during the estima-

tion process. —

The state error, measurement parameter error, and random
excitation vectors and the state transition matrix are thus
partitioned as follows:

Asx(t)
Ax(t) = |-————- ' (2.2-1a)
AB(t)
AEP
Ap = | -—- (2.2-1Db)
AY
2-6
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v (t, t)
\p(t’ to) = | memem————— (2.2—1C)
Walt, tg)
1
¢s(tl tO) : e(tl tO)
d(t, t)) = |---mm--- -%- --------- (2.2-14)
Asx(t)
where Ag(t) = | -—-——-- = solve-for parameter vector
As
P
AE(t) = dynamic consider parameter error vector
A? = measurement consider parameter error vector

The error equations (2.1-4) and (2.1-12)-c¢an then be re-

written as

As(t) = ®(t, £,) AE(to) + O(t, tg) AE(tO) + Y(t, £,)  (2.2-2)
AB(t) = Palt, t.) AE(tO) + EB(t, t,) (2.2-3)

Ayi = Gi As(ti) + Ti Ay + vy (2.2-4)

where

O(t, t ) = |——mmmmm i (2.2-5)

rz.“’-?‘ D
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' \l’s(tl tO) ~—
¥(t, t ) S| ----=m--- (2.2-6)
0]
o(t, to)
O(t, to) S e ——— (2.2-7)
i 0]
3g. pag. | 8g.
G, = — = — i —* (2.2-8) ¢
ds Lasx ! asp
agi
ri = — (2.2-9)
oY
9g. 3g. | -
4 = |10 (2.2-10) &
ax 8Sx : _
3g. dg. | dg.
- | = = (2.2-11)
dp Bsp ‘ oy

We have assumed that no measurements depend directly on any
dynamic parameter that is not a solve-for parameter. Fur-
ther, we have assumed that the time evolution of the dynamic
consider parameters does not depend on any of the dynamic

solve-for parameters.

The function of a full estimation system is to determine an
estimate s*(t) given measurements Y; - ADEAS, however, does
not actually compute an estimate but determines how good an

estimate would be if it were produced in a given situation.
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= , ADEAS does this by computing the estimation covariance ma-
trix defined by

P(t) = E[As(t) AST(t)] (2.2-12)

ADEAS thus performs linear covariance analysis for batch and
sequential filters. The covariance matrix P(t) then pro-
vides a statistical measure of how good an estimate could be
produced at time t of a given scenario.

The random excitation enters into this computation in the
form of the random excitation covariance matrix, which is
defined as

e ; (2.2-13)
v;‘s | ag(t, tg) | dgplt, o)
I CATER) ERORSY
s’ "0/} BT TO
where

RO TR N EHORN]
(2.2-14)
/-t | $(t, £
- sk, £y 1 oee, £ @ | —g——m—-- at
s T ,
t [ ] Y lett, £
0
a(t, tg) = E[vg(t, tg) THORN)
| /t o . (2.2-15)
o = 0 1 . (t, t-)] Q. |-z-——--- dt'
iy B u T .
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d q(ts tg) = E [Ip's(t, £,) Wa(t, to)]
t % ; (2.2-16)
= d (t, t') 1 O, t)| Q, |-g———-—-- at
[ [S( e )] P bglt, £)
0

2.3 BATCH FILTER

A batch filter produces an estimate E*(to) at an epoch time
to' based on a single batch of measurements y that may have

been made at various times. Thus,

— T
YE[Yl, ym] (2.3-1)

where each y, is a scalar measurement. Similarly,

-

— T
x * -
Yy {yl. y,;] (2.3-2)

and

Ay

[Ayl, ooy Aym]

The batch filter produces an estimate §*(t6) that gives yv*,

which minimizes the cost function

= oT . _*T —*
V = Ay~ WAy + AsA wA AsA (2.3-3)

0450
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>
(7]

*
i

u |
P

=
e

= positive-definite symmetric measurement weight

matrix

A s*(to)

—*-_ — — _ —
sx s(to) + s(to) s*(to)
= As(to) - AsA
a priori estimate of E*(to)

non-negative-definite symmetric a priori weight
matrix

2.3.1 ESTIMATION ERRORS

Since the batch filter determines E*(to), it is necessary to
relate AY to A§(t0). Substituting Equation (2.2-2) into

Equation (2.

2-4) gives

£ By, = Gi[®(t;, t)) AS(t)) + O(t;, t,) AB(t) + ¥(ty, ;)]

+ ri Ayi + V. (2.3-4)

1

Fi As(to) + Bi AB(to) + Fi Ayi + Ui + vy

where, using Equations (2.2-5) through (2.2-8)

F.
1

0450

= G. ¢(t t ) agicb(t )iagi (2.3-5)
- s ] = — ., t N 2.3-
1 1 (o] aS S 1 (o] : aS
X p
_ 8g;
Bi = Gi @(ti’ to) = —/— e(ti, to) (2.3-6)
ds
X
2-11
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_ 9g. _ -
b 4
Then,
Ay = FAE(to> + Ae

1 By
b R el B
L
T
U= [Ul, e UHJ
_ T
N =

(2.3-8)
I
~p-
m
(2.3-9)
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Substituting Equation (2.3-8) into Equation (2.3-3) for the
loss function then gives

V = [FAS(t.) + ae1T WIFAS(t ) + Ael
+ [asce )y - as, |T w [As(t ) - 8s,]
o A A 0 A
—-T T = =T T .. -
= As (to)(wA + F WF) As(to) + As (to)(F WAe - WAASA)
=T =T - “Tors . asTw As
+ (Ae WF - ASAWA) As(to) + Ae " Wie + ASAWAASA
- 1/..T ‘o - T -
= |As(t.) + W, (F WAe - W_As ﬂ W [As(t )
[ ° N AA N © (2.3-10)
~1({_T, . ,— -
+ WN (F WAe - wAAsAi] —-
( T As -\ _-1fT = <
- | F"WAe - WAASA) WN (F WAe - WAAsA)
—T. . .= -T -
+ Ae " WAe + AsAWAAsA
where
W. =W, + FTWF = normal matrix (2.3-11)

N A

The final equality in Equation (2.3-10) is valid as long as

WN is nonsingular. The sirgularity (or ill-conditioning)

of WN indicates a lack of observability of the solve-for

parameters from the measurements ¥.

0450



If WN is nonsingular and positive-definite, then it is clear
from the form of Equation (2.3-10) that V is minimized when

As(to) = -WN (F Wie - WAASA)
- —w- T 3 T LT . W - =) (2.3-12)
= -Wy 'F W[BAB(tO) + Ay + U + N] WAASA;
= Asn(to) + Asy(to) + AsB(to) + Asu(to)
where
As (t ) = wil (w,As, - FTWN) (2.3-13)
n*ro/ - N A™TA *
As (t ) = -wil FTWraAy B (2.3-14)
Yy o'~ N :
AS.(t ) = -wi' FIWBAB(t ) (2.3-15)
B* o’ ~ N o) *
Asu(to) = —WN F WU (2.3-16)

The batch filter produces an estimate E*(to) at the epoch
time to. This estimate may then be propagated to any other
time t using Equation (2.1-2). In doing this the estimation

0450



A

\‘bi’.'ﬂ

errors As propagate according to Equation (2.2-2). Substi-
tuting Equation (2.3-12) for A§(to) into Equation (2.2-2)

gives
As(t) = &(t, to)[A§n<to) + AEY(to) + Bsg(t ) + AEu(to)]
+ O(t, t) AB(t)) + ¥(t, £.) (2.3-17)
= As_(t) + AEY(t) + Asp(t) + As (t)
where
As_(t) = ©(t, t) s (t) (2.3-18)
AEY(t) = o(t, t,) AEY(tO) o (2.3-19)
Asg(t) = ®(t, t) Asy (t)) + ©(t, t) AB(t.) (2.3-20)
As (£) = @(t, t) As (t ) + ¥(t, t) (2.3-21)

2.3.2 COVARIANCE

Equation (2.3-17) gives the estimation errors induced by the
systematic error sources AY and AE, the random error sources

U and N and the a priori error AEA. It is assumed that all

0450



these error sources are uncorrelated. The covariance matrix

P(t) is

P(t) = E[AS(t) As (t)] (2.3-22)

P,(£) + P () + Pa(t) + P, (K)

where

P (t) = E[as (t) Agg(t)] (2.3-23)
P (t) = E[As, (t) A§$(t>] (2.3-24)
Pa(t) = ElAsg(t) AEg(F)ﬁ' (2.3-25)
P (t) = El4s,(t) ASL(t)] (2.3-26)

The following subsections discuss, in turn, each of these

contributions to the overall covariance.

2.3.2.1 Data Noise Contribution

From Equations (2.3-18) and (2.3-23) we have
T
Pn(t) = ¢(t, to) Pn(to) P (t, to) (2.3-27)

where from Equation (2.3-13)

-1 T -
P (t)) = Wy (WAPAWA + F WRWF) Wy

1 (2.3-28)

0450
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with

= o[as AT
PA = E[AsA AsA]
(2.3-29)
- —T . 2 2
R = E[NN"] = diag (01 ’ ’ om)
The a priori weight matrix is given by
w =p.! (2.3-30a)
A A :
where the a priori covariance is
Paattitude | 0
Py = |--——=—=——- (2.3-30Db)
0 | P
[ Aother

with P being the a priori covariance of the atti-

Aattitude
tude error parameters, as given in Section 3.2 or 4.2.1, and
PAother being the a priori covarilance of other solve-for

parameters, assumed to be diagonal:

. 2 2
Aother = diag(o,,/ «c+-¢ @ )
. Al Another (2.3-30c)

P

W is assumed to be a diagonal matrix of the form

W = diag <wl, ey wm) (2.3-31)

0450



Equations (2.3-28) through (2.3-31) give _

m
-1 T 2 2 -1
P (t) = Wy (wA + E F; F, W’ oi) Wy (2.3-32)
i=1
where
m
T
WN = WA + Fi Fi W, (2.3-33)
i=1
with the row vector Fi given by Equation (2.3-5). For mini-
mum variance weighting, set W = R_1 so that Pn(to) assumes
its minimum value Pn(to) = Wﬁl. Note that this only

minimizes the data noise contribution to_the total covari-
ance. £
2.3.2.2 (Consider Parameter Contribution

It is assumed that all consider parameters are uncorrelated
so that

— —T . 2 2
E A = ’ LAY
(AyAy~] diag °Y1 an
(2.3-34)
= =T : . 2 2
E[}B(to) AB (to)] = diag aBI, -1 Op
g

0450



- . Using this with Equations (2.3-14), (2.3-15), (2.3-19),
(2.3-20), (2.3-24) and (2.3-25) gives

n
2 as T
P (E) = Ok, £) 0D oy {a (t 5}[87 (to)] oT(t, t.)
1=1 (2.3-35)
Og -
2 as .
Pa(t) = ) oﬂi[dut, eg) Bceg) o, to)] |
i=1 1 (2.3-36)

T
x {¢(t t)) aB (t ) + ©,(t, t )]

where, from Equations (2.3-14) and (2.3-15),

95
3y, (t )] (2.3-37)

m —_ .
3s -1 T as_
2(t,) = -W F.l.w. = [ () !.

-

m - -
;E(t ) = -wil :E: F1B.w, = [%%—(to) ... ags (to)] (2.3-28)
izl

with

@
”~~
ot
-

o

0
A
—

o(t, t,) =[@1(t. ty)
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ri, Fi' and Bi defined by Equations (2.2-9), (2.3-5), and ~

(2.3-6), respectively; and W, and WN as in Sec-
tion 2.3.2.1. The quantities Fi and Bi are row vectors of
dimensionality nY and g, respectively.

2.3.2.3 Dynamic Noise Contribution
From Equations (2.3-16), (2.3-21), and (2.3-26) we have

P (t) = D(t, t)) + ®(t, t)) P (t)) ol (t, t,)

(2.3-39)
-1_T = =T
- ¢(¢t, to) WN F™WE [U ¥ (t, toi
3 =T -1 4T
- E[?(t, ) T ] wew o (e, t)
where
~ T ds(t, to) E'O
'D(t, to) = E|¥(t, to) Y (t, to) = |————————— do——= (2.3-40)
0 1 0
with ds defined by Equation (2.2-14), and
S B Sy -1
Pu(to) = WN FWE[UU"] WFWN (2.3-41)
Using Equations (2.3-7), (2.3-9), and (2.3-31) gives
m .
T_. —
F'WU = E MGi y (ty, to) (2.3-42)
i=1
2-20
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S

where

9

g.
M, E FT —% w, (2.3-43)
. 1 as 1

1 x
with F, defined by Equation (2.3-5), and Bgilagx defined by

Equation (2.2-8).

The row vectors agi/8§x have dimensionality equal to the
number of dynamic solve-for parameters.

From Equation (2.3-42)

m m T
T —T . - -
F WUU WF = Z Mg w (s, t,) E Ms . ws(tj, t,)
i=l 1 j=l J
m -
— =T T
= z M, w_(t;, t ) y (kt;, £ ) M
&~ Gi s* 1 0 s 1 (o) Gi (2.3-44)
j-1
- -T T
+ MGi :E: q’s(t to) ws(tj' to) MG.
j=1 ]
i-1
-~ =T T
e Y g, Fcey v VECE £ | Mg
j=1 ? '
2-21
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Using this in Equation (2.3-41)
i-1
+ M da'(t., t.) MG (2.3-45)

where dS is defined by Equation (2.2-14) and for ti > tj

ai(ty, tg) = E[Gs(ti, t,) ws(t.l_toﬂ (2.3-46)

Using Equation (2.2-1lc), we see that this is the upper left-
hand corner of the partitioned form of the larger matrix

d'(ti, tj)

i
t
—r
€|
~
cr
[N
ct
(o}
~
€
~
ctr
-
t
(e)
~r
—_ )

(2.3-47)

*I

This can be written, using Equation (2.1-8) and the fact that

- -T
E[w(ti, tj) W (tj, toﬂ = 0 for ti > tj, as

d'(ti, tj)

(2.3-48)

-1
$lty, £5) $7H(EsL £ Alty, t)
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- The group property of ¢, Equation (2.1-7) has been used to obtain

the last equality. Then combining Equations (2.2-14),
(2.2-13), (2.3-47), and (2.3-48) gives

. — ! "l
ag(ty. tj) = (¢ (ty, t,) | O(ty, t,)] i € R D | =

()
(o}

(2.3-49)

Substituting Equation (2.3-49) into Equation (2.3-45) then

gives
m
-1 T . T.,,T -1
Palty) = Wy :E: [Mc.ds<ti' k) Mg, + Mg Q; ¢+ QiMG.] Y
: i i i i
i=1
(2.3-50)
Ko -
-
- where
i-1
d (t., t)
Q. = 6 L(e., t ) | -S--d-__2_ M (2.3-51)
1 3 o} T Gj
J=1 dSB(t]' tO)
and
|
MG = MG. [¢s(ti’ to) | e(ti’ to>]
i i
(2.3-52)
{39 l
= F; = bs(tyr B Byl Wy
asx i

where Bi ié defined by Equation (2.3-6), and Equa-
tion (2.3-43) has been used in the last step.
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From Equations (2.3-42), (2.3-46), (2.3-49), and (2.3-51) we _—
also have:

1l

. m

FT wz[ﬁ v, to)] =) M E [Esui. tg) Wa(t, to>]
i=1

=) mE [Esgti, t,) wa(t, to)]

1
m
+ Z MG_E[I;TS(ti, £,) e (t, to)](2.3—53)

i=k
k-1 m
IT L]
- Mg agT(E, ) ¢ > Mg, a5ty ©)
i=1 i=k
[ T - A2
(L, t )-' - da_(t, t.)
S| AR Y TR i CYRES) RN B
T T
Le (t, to)J da(t, ty)

where k is chosen so that t, _, <t < t, and

m :
Qi = :E: M" (2.3-54)

Then,

FTWE[G ¥ (¢, to)] - \:FTWE‘IG ifg(t, £ )

——

O} (2.3-55)

and Pu(t) can be computed by substituting Equations (2.3-40),
(2.3-45), and (2.3-55) into Equation (2.3-39).
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2.3.3 COMPUTATION

The analysis equations presented in the previous subsections
have been carefully derived to allow efficient evaluation.
This subsection outlines a procedure to efficiently perform
these computations. This procedure is only intended to show
the overall structure of the computations and does not neces-
sarily cover all microefficiency details. The procedure has
two stages: it first computes analysis results at the epoch
time to' and then uses these results to compute the various
covariance matrices at a set of "output times” Tyr =oes Tg-
It is assumed that to < tl < t2 < ... < tm and that to = Ty
< Ty eee < T

Stage 1: Compute Epoch Errors

The stage 1 procedure assumes that the following are avail-

able:

o See Equation (2.3-29)

Wor Wy See Equations (2.3-3) and (2.3-31)

agi/agx See Equation (2.2-8) and Sections 3.3 and
4.3

Fi See Equation (2.3-5)

Fi See Equation (2.2-9) and Sections 3.3 and
4.3

Bi See Equation (2.3-6)

D(ti, to) See Equation (2.3-40) and Sections 3.2 and
4.2

¢(ti, to) See Equation (2.2-5) and Sections 3.2 and
4.2

¢S(ti, t ) See Equation (2.2—1d} and Sections 3.2 and

4.2
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G(ti, t) See Equation (2.2-1d) and Sections 3.2 and
4.2

¢_1(t., t ) See Equations (2.1-5) and (2.1-7) and Sec-
" tions 3.2 and 4.2

The procedure produces the covariance matrices Pn and Pu and
the sensitivity matrices 93§/9Y and 395/8B, all at the epoch

time to’ and the intermediate matrices M} , PN’ Q., Q', and

i
i
QF' These results are accumulated during a single pass over

all the measurements.

1. Initialize Mn’ Mu’ MY' MB' Q°', QF' and Q1 to zero.
2. For i « 1 to m, do
T 2 2
a. Mn + Mn + Fi Fi wi oi
b. M_ <+ M + FL T, w, .
Y Y i "1 i
ag.
c. MG + Ff f:l wi
ds
X
T
d MF L Fi Fi w1
T
e. MB “ Fi Bi w1
f. Let M, = [MF ! Mg ] (with solve-for and con-
s ! p
. . : .
sider columns) in MG. + [MF : MB]
i s

T T . T

g. Mu + Mu + MG ds(ti' to) MG + MGi Qi + Qi MGi

h. MB + MB + MB
d_(t., t.)

. -1 st 1 (o] T

1. Qi+1 « Qi + ¢ '(ti' to) -} ----------- MG
dsB(ti' to)

k. Q' « Q' + Mé-

0450
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.
N
i

-1

PN : , for minimum variance
4, Pn + weighting
PN (wA + Mn) PN , otherwise

5. Pu + PN Mu PN

6. a%(to) « -p. M

oY N Y
7. a§(to) « -p, M,
on

Stage 2: Compute Error Analysis Results

In addition to the results of stage 1, the stage 2 procedure
assumes that the following are available:

See Equation (2.3-34)

Yi© By -
¢(ti, to) See Equation (2.2-5) and Sections 3.2 and 4.2
D(Ti, to) See Equation (2.3-40) and Sections 3.2 and 4.2
@(Ti, to) See Equation (2.2-7) and Sections 3.2 and 4.2

The procedure produces the covariance matrice Pn(ri),
PY(ti), PB(ti), Pu(ri), and P(Ti) for each output time Tt

1. Set k « 1

2. For i « 1 to 2, do
T
a. Pn('ti) * ¢(Til to) Pn N (til to)
3s 3s 3s | | _3s
b. Let 22 = &(1., t.) &(t) = . |
3y i o) 3y 0 aYl: : aan
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n
Y = =T
2 9s 3s_
PY(Ti) « Z on an an
j=1

3s _ 3s
Let .3 = ¢(ri, to) aE(to) + @(ri, to)
1t T
I
BBl! iaBnB
in
]
- =T
2 9s 9s_
Pa(Ty) * Z 9. 3@, 8B
21 j J j
j -
While tk < Ty do
(1) Q' « Q' - M.
Gy
(2) ke« k+1
T
¢ (t., t ), O
- T | s__1___O _.i___
Let P' = ¢(Ti, to) PN Qk T a
e ('ri, to) Y
_ d (t., t) | O
+ Q'T ¢ l(rl. to) B
at ¢ £y oo
splTir to’ !
in
Pu(Ti) = D(Til tO)
+ ®(Ti, to) Pu®T(ti, to) - P' - P'T



3

f. P(ti) « Pn(ri) + PY(ti) + PB(ti) + Pu(ti)
2.4 E NTIAL FILTER

A sequential filter produces an estimate s*(t) based on
measuréments taken at discrete times ti < t. Between
distinct measurement times, the state estimate X*(t) is pro-
pagated using Equation (2.1-2). For each measurement Y;o
the solve-for parameters are updated based on the pre-update
state xX*(i-) and the measurement. Typically, this update

has the following form:

s*(i+) = s*(i-) + K Ay, (2.4-1)

where s*(i+) and s*(i-) denote the estimate of solve-for
parameters immediately after and immediately before incor-
porating the information contained in the-measurement. This
notation must be distinguished from §*(ti), which denotes
the solve-for  parameter estimate incorporating the informa-
tion contained in all the measurements at ti’ which may
include measurements other than Y;- The gain matrix Ki
determines how much the propagated state is corrected, based
on the measurement residual Ayi; this is a column vector
with dimension equal to the number of solve-for parameters.

2.4.1 ESTIMATION ERRORS

The estimation error immediately after an update is

As(i+)

s(t) - s*(i+) = s(ty) - s*(i-) - KAy,
(2.4-2)

As(i-) - KiAYi’
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since the true state is continuous at ti' Substituting Equa-
tion (2.2-4) for Ayi gives

As(i+) = (I - K;G;) As(i-) - xi(riA§ +vy) (2.4-3)

We divide As(t) into separate contributions due to measure-
ment noise, measurement consider parameters, dynamic con-

sider parameters and dynamic noise:

As(t) = AEn(t) + AEY(t) + AEB(t) + AEu(t) (2.4-4)

These obey the update equations

AEn(i+) = (I - K;G;) A§n<i-) - Kyvy (2.4-5)
AEY(1+) = (I - K;G;) AEY(i—) - KT, Ay (2.4-6)
AEB(i+) = (I - I_<iGi) AEB(i—) (2.4-7)
As (i+) = (I - K;Gy) As  (i-) (2.4-8)

consistently with Equations (2.4-3) and (2.4-4). 1If ti=ti+
then As(i+) = As(i+l-), and similar relations hold for A§n,

ll
ASY' AsB, and Asu.

If ti # ti+l'
processed at ti’ AE(ti) is equal to As(i+), since it

which means that Ys is the last measurement

incorporates'the information contained in all the measure-
ments for times less than or equal to ti' Then from

2-30
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= . Equation (2.2-2), propagating the estimate E*(ti) will
result in an error for ti <t < ti+l given by

As(t) = ®(t, t;) AE(ti) + O(t, t;) Aﬁ(ti) + ¥(t, t.) (2.4-9)

The limit of AS(t) as t approaches ti+l is the estimate
error AE(ti+1—). Inserting Equations (2.2-3) and (2.4-4)
into Equation (2.4-9) gives the following propagation equa-

tions for the noise and consider components of the estimation

error

Asn(t) = ¢(t, ti) Asn(ti) (2.4-10)
o 85, (£) = O(t, t) As, (t7) (2.4-11)

ASB(t) = ¢(t, ti) ASB(ti) + O(t, ti) ¢B(ti, to) AB(to)
(2.4-12)

Asu(t) = ¢(t, ti> Asu(ti) + O(t, ti) wB(ti, to)
(2.4-13)

+ Y(t, ti)
The complete specification of A§n, AEY, AEB, and AEu requires
the initial conditions

s _(t,)) = Bs(ty) (2.4-14)

=

il
o

AEY(tO) = AEB(tO) = A§u<to) (2.4-15)
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2.4.2 COVARIANCE

Equation (2.4-4) gives the estimation errors induced by the
systematic error sources AY and AB and the random error
sources u and v, . It is-rassumed that all these error

sources are uncorrelated. The covariance matrix P(t) is then

_ - —T
P(t) = E[As(t) As ()] (2.4-16)

P () + PL(£) + Pglt) + P (k)

where

P_(t) = E[Agn(t) AEﬁ(tﬂ + D*(t, t,) (2.4-17)
P (t) = E[égY(t) Agi(ti‘. (2.4-18)
Pa(t) = E[Agﬁ(t) AE%(t)T (2.4-19)
P (t) = E[Agu(t) AEﬁ(t)] - D*(t, t) (2.4-20)

The matrix D*(t, to) represents an estimate of the dynamic
noise used to compute the gain matrix. It obeys the update

equation at measurement Yit

D*(i+, t ) = (I - K;G;) D*(i-, t ) (I - KiGi)T (2.4-21)
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D*(t,to) obeys the propagation equation for

T
D*(t, to) = ¢(t, ti) D*(ti, to) o (t, ti)

(2.4-223a)
+ D*(t, t.)
i
with
d;(t, tl)! 0
[ |
D*(t, tl) = 0 E 0 (2.4-22b)
and
‘ ' I S CTE
ax(t, t;) = f (¢ (£, t') ! ©(t, t*)] Q* | —5———=———~ dat’
> ’ t. ° l uleTct, tr)
* .4-22c)

QG is a diagonal matrix of estimates of the covariances of
the dynamic noise. The matrix D*(t, to) has the initial

* =
value D (to, to) 0.
The following subsections discuss each of these contributions
to the overall covariance. 1In each case, the propagation
step is unnecessary if ti = ti+1'
2.4.2.1 Noise-Induced Contribution

From Equations (2.4-10), (2.4-17), and (2.4-22) we have

P_(t) = ®(t, t;) P (t;) T (t, £;) + D*(E, t;)  (2.4-23)

0450



for ti <t < ti+1' From Equations (2.4-5), (2.4-17), and
(2.4-21), the covariance update is

. . T T
Pn(1+) = (I - KiGi) Pn(l—)(I - KiGi) + KiRiKi v (2.4-24)

with
R. = E [v? ].-. o2 (2.4-25)

The initial value Pn(to) is the a priori covariance PA,
given by Equation (2.3-30b).

For Kalman filtering, Ki is chosen to be the Kalman gain
defined by '

-1

K, = P_(i-) H [Gi P_(i-) G; + Ri] (2.4-26)

Note that a Kalman filter minimizes only the noise-induced
contribution to the overall covariance.

2.4.2.2 Consider Parameter Contribution

It is assumed that all consider parameters are (initially)

uncorrelated so that

E[AY AYT] = diag o$ , e, O (2.4-27)

E[Aﬁ(to) AET(tO>]= diag (o (2.4-28)

RN
=
-
-
Q
RN
o]
[v]
N——"
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Using this with Equations (2.4-18) and (2.4-19) and defining

35/8Y and 35/8B so that

then gives

where, from Equations (2.4-11)

0450

AsY(t) =

85ty ay

oy

AS(t) = i% (£) AB(E)

38 (e) = oce, t) 2B(ep) =

mlm
R |

ay

ot £ 22 (6) + OCE, £ $pley £

>
“ |

@
R

H

ay

[=b]

“ |

as
3y

T
o)
1

and (2.4-12),

o

(2

(2

(2

(2.

(2

.4-29)

.4-30)

.4-31)

.4-32)

4-33)

.4-34)



Using Equations (2.4-29) and (2.4-30) in Equations (2.4-6)

and (2.4-7) gives the following update equations:
85 (j4) = (I - K.G.) 28 (i-) - K,T, (2.4-35)
3y i~i 3y iti
8 (34) = (1 - K;6p) 2B (io (2.4-36)
af aB
Both these matrices are zero at the initial time to.
2.4.2.3 Residual Dynamic Noise Contribution
From Equations (2.4-13), (2.4-20), and (2.4-22) we have
B (E) = O(E, £;) P T(E, ;) + (E, £)) Pup(e;) O7LE, €y) |
s O(t, t) PLo(t,) ®T(E, ;) + 8k, £;) dglty, £,) eT(t, t;) (2.4-37) o
+ D(t, t;) - D*(t, t;)
where
- < —T
PuB(t) = E[Asu(t) wB(t, to)] (2.4-38)
and dB is defined by Equation (2.2-15).
It follows from Equations (2.1-8), (2.2-1lc), and (2.2-14d)
that
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Using this and Equation (2.4-13) in Equation (2.4-38) gives

T
PuB(t) = (D(t, t1> PUB(ti) ¢B<tr tl)

£ O(t, t) dglty, ) oglt, £5) (2.4-40)
+ D (s £y)
where
_ _ —r dsB(t' ti)
DSB(t' ti) = E[?(t, ti) wB(t, ti)] = ————6 ————— (2.4-41)

with dsB given by Equation (2.2-16).

Using Equation (2.4-39) in Equation (2.2-15) gives

T
dB(t, L) = ¢B(t, t;) dB(ti, t,) ¢B(t, t.) + dB(t, t:)
(2.4-42)

From Equations (2.4-8), (2.4-20), and (2.4-21), the
covariance updates for Pu and PuB are

P (i+) = (I - K;G;) P (i-) (I - KiGi)T
PuB(i+) = (I - KiGi) PuB(i—)

Both P and P are zero at the initial time t .
u ufl . o
2.4.3 COMPUTATION

The analysis equations presented in the previous subsections
have been carefully derived to allow efficient evaluation.

This subsection outlines a procedure to efficiently perform
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these computations. This procedure is only intended to show e
the overall structure of the computation and is not concerned
with all microefficiency details. The procedure propagates
an initial covariance PA to the output times-tl, REATY
performing measurement updates at times tl, ey tm. It is
assumed that to < ’c1 < t2 < ... = tm and that t0 = T) < T, <

eee < TQ.

The procedure assumes that the following are available:

PA See Equation (2.3-30) and Sections 3.2 and
4.2
o4 See Equation (2.4-25)
Gi See Equation (2.2-8) and Sections 3.3 and
4.3
ri See Equation (2.2-9) and Sections 3.3 and
4.3 - .
feaod
d(t, t') See Equation (2.2-5) and Sections 3.2 and _
4.2
O(t, t°*) See Equation (2.2-7) and Sections 3.2 and
4.2
d(t, t*) See Equation (2.1-5) and Sections 3.2 and
4.2
¢B(t, t') See Equation (2.2-1d) and Sections 3.2 and
4.2
D(t, t*) See Equation (2.3-40) and Sections 3.2 and
4.2
d(t, t*) See Equation (2.2-13) and Sections 3.2 and
4.2
dB(t' t') See Equation (2.2-15) and Sections 3.2 and
4.2
2-38
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- : DSB(t, t') See Equation (2.4-41) and Sections 3.2 and
4.2
D*(t, t') See Equation (2.4-21)

Y

o, g (to) See Equations (2.4-27) and (2.4-28)
i

The procedure produces the covariance matrices Pn(Ti),
PY(ti), PB(ti), Pu(ti), and P(ti) and the analysis matrices
¢(ti, Ti_l) and d(Ti, Ti_l) for each output time T,

1. Set Pn <« PA _
Initialize 95/3Yy, 8s/3B, P, PuB’ d, and dB to zero
Initialize ¢ to the N x N identity matrix
Set 1 « 1, k« 1, t' « to

2. While i < ¢ do:

5%3 Let t = min (Ti, tk) in -
7 a. If t #£ t' then:
(1) p_ <« ®t, t') P oT(t, t') + D*(t, t')
(2) 8 oo, vy 8
ay 3y
3y Lo, 9 Eoe, £ o (e, )
B an
. T .
(4) B, o« ®(t, t') P ®T(t, t)
+ d(t, t') P . OT(t, t')
r uB !

+

' T &7 '
B(t, £') Pyy ¢(t, t7)

+

o(t, t') dg @7(t, t*)

+ D(t, t') - D*(t, t')
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(5) By« Ok, t') By ¢k, t0) -

ufl

’ T v ’
+ O(t, £') dya(t, t') + D g(t, t')

(6) dy « dp(t, t') dpén(t, £') + dg(t, t°)
(7) ¢« d(t, £) ¢

(8) d <« (t, t') ddT(t, t') + dA(t, t')

b. If t = £, then:

k
Let
-1
T 2
K = Pn,Gk(Gk Pn Gk + ck )
M=1I - KGk
in e =

(1) P« MP, ML + K sz KT -

(2) 88 (88 _r
(3) 88y
3B 3B

(4) Pu « MPuM
(5) P

(6) k « k + 1
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- F— ! ' -
pee 8 - [} {2
ay Y14 } °Yn
i Y]
85 . \2a | 4
= ! i
an L 1 an
in
(1) Pn(ri) <« Pn
& s 3s ’
2 S oS
(2) PY(Ti) « cy. (ay.) (ay.)
<t i 3

n

K] — -
@ e« 2 o (3) (3)
(4) Pu (Ti) « Pu
(5) P(ri) « Pn(ri) + PY(ti) + PB(ti) + Pu(ti)

(7) d(ti, Ti—l) « d

(8) Reset d to zero and ¢ to the N x N

identity matrix
(9) i« i+ 1

d. £t' « t
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SECTION 3 - SPIN-STABILIZED SPACECRAFT MODELS

As Section 2 discussed estimation filtering in a general
sense, this section provides specific attitude and sensor
models for spinning spacecraft. These models provide the
basis for the construction of the state transition, measure-
ment partial derivative, and random excitation matrices used

in Section 2.

3.1 ATTITUDE GENERATION

For spin-stablized spacecraft,the attitude is determined by
the direction of the spin axis. The nominal spin axis is
assumed to be fixed in inertial space and is specified by
its right ascension o, and its declination 8 as shown in
Figure 3-1. The actual spin axis may drift from this iner-
tially fixed nominal position. ADEAS provides a model for
sinusoidal variations of the actual spim~axis about the nom-

inal axis:

a*(t) a + 3, sin [{ (t - to) + ba] (3.1-1)

n

s*(t) = 6_ + ag sin [T (& - tg) + byl (3.1-2)

n

where the amplitudes a, and ag are constant dynamic param-
eters, while the frequency { and the phases ba and b& are
assumed to be exactly known. The spin-axis attitude defined

by a* and 8§* is used in all sensor model computations.
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NOMINAL -
SPIN AXIS
|
]
|
5n !
, » Y
I =
| 2
a \ "5
n N -3
X 3

Figure 3-1. Right Ascension and Declination of the Nominal
Spin Axis

3.2 DYNAMIC ERROR MODEL D €<--
- o
If we define a state vector x by -
x =, (3.2-1)
a
as
then differentiating Equations (3.1-1) and (3.1-2) gives the
dynamic model for spin-stablized spacecraft in the form of
Equation (2.1-1):
a, { cos [{(t - to) + ba] ua(t)
. a. { cos [{(t - t£,) + b.] u.(t)
x(t) = | ° 0 S (3.2-2)
0
L . L g J
)
/
3-2
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— _ where u, and Ug are dynamic noise processes that induce
additional attitude variations.

From Equation (3.2-2), the state transition matrix, as de-
fined by Equation (2.1-5), is then

1 0 6, o0
0 1 0 ¢5
d(t, t') = (3.2-3a)
0
0 0 1l
L J
with
¢a = sin [Q(t - to) + ba] - sin [Q(t"' - to) + ba] (3.2-3b)
a and —
— ¢6 = sin [T(t - to) + bS] - sin [Q(t' - to) + bs] (3.2-3¢)

1 o b, 0
0 1 0 -$
6~ L(e, t') = § (3.2-4)
1 0
0 1

The a priori covariance of the attitude error parameters 1is

. 2 2
Pprattitude ~ diag (Ga ' 06) (3.2-5)

L
M
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Defining ¢ as in Equation (2.1-6) the random excitation

matrix is

a(t,

where

[Q

= E[@(t, £') ¥oo(t, t'):l =

L0

E[Ea(w Ez(t')] =g, 8(t - t)

E[Es(t) E'g(t-)] = Qg 8(t - t')

-y

oq

04

At

(3.2-6)

(3.2-7)

The partitioning of d in Equation (3.2-6) is not the same as
the partitioning in Equation (2.2-13); the two partitionings

are related by row and column interchanges depending on the

selection of dynamic solve-for and consider parameters.

3.3

For a spin-stabilized spacecraft,

SENSOR MODELS

The spin-axis sensors modeled by ADEAS are

IR horizon sensor
V-slit star scanner
V-slit Sun sensor

the primary attitude in-

formation is given by the spin-axis direction ﬁ, which is

0450
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expressible in terms of its right ascension « and declina-

tion § in GCI coordinates as

cos § cos a
U = cos § sin « (3.3-1)
sin §

The sensed data can be expressed in terms of a reference
vector ﬁ, which is the unit vector in the direction of a

sensed object.

Since the spin-angle itself is not of interest, the direc-
tion of the projection of the reference vector R in-the
spin-plane conveys no attitude 1nformat10n. Meaningful
measurements of any reference vector R give the following
form of the measurement function h(xX, p') of Equa-

tion (2.1-13): —

h(z, p') = h(C_, P") (3.3-2)

. where h is a sensor-specific function

and C is the projection of the unit reference vector ﬁ onto

the spacecraft spin axis, or cosine of the angle between ﬁI
and UI;
I , I . I .
C =R: cos § cos @« + R, cos § sin « + R_ sin § (3.3-3)
r p:4 v b4

where the superscript I denotes GCI coordinates.

For all spin-stablized spacecraft sensors, the functional
dependence of the measurement on the spacecraft attitude,
parameterized by the right ascension and declination of the
spin axis, is through the projection Cr' Since the attitude

errors are always a subset of the solved-for vector, the

3-5
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partial derivatives of the measurements with respect to the
attitude are computed as

ay* _3h %S  an
8~ 3C_ 3x - aC_

ERi cos § sin a + R; cos § cos a](3.3—4a)

iz*_ﬁh_a_c_r.
98§ ~ aCr 38
(3.3-4Db)
= %%—[}Ri sin § cos a - R; sin § sin ¢ + Ri cos %
r

The formulation of h and its partial derivatives with re-
spect to the projection Cr is thus a key to the sensor-
related error analysis computations. The expressions for
h(Cr, p') are given below for each sensqi as well as a com-
plete list of all partial derivatives for each sensor.

3.3.1 IR HORIZON SENSOR MEASUREMENT MODEL AND PARTIAL -
DERIVATIVES
The measurement model for the IR horizon sensor is shown in
Figure 3-2. This model describes both the conical scan IR
sensor, which has a fixed scan cone angle ¥y, and the pano-
ramic attitude sensor (PAS), which has a varying scan cone
angle. Since the scan cone angle of a PAS is constant for
each complete revolution of the spacecraft, the analysis can
be carried out for a fixed scan cone angle. The analyst
defines the parameters describing how the scan cone angle
changes per revolution. If a zero incremental change is
specified, the PAS will be identical to the conical scan IR
horizon sensor. If the increment is not zero, the scan cone
angle will increase each revolution until it reaches a user-
defined upper limit and then decrease by the same incremental
amount until it reaches the user-defined lower limit. This
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is the only ADEAS sensor model that uses the projections
onto the spacecraft spin axis of two external reference vec-
tors, i.e., the Sun vector and the Earth vector. The meas-
urements of the horizon sensor are the Sun to Earth-in
azimuth, Sun to Earth-out azimuth, Earth width, and Earth
azimuth with respect to the Sun. The measurements are cal-

culated as

y* = Earth width = h(Cg, Cp)
=9 =2 cos—l {ggﬁ_a_:_ggi_a_ggg_xl (3.3-5)

sin n sin ¥y j

y* = Earth azimuth = h(CS, CE)

- _ -1 - s o]
= QE = COS sin n sin B (3.3-6)

y* = Earth-in = h(Cg, Cp) = Ay = & - 1 2 (3.3-7)
1
x = - = = = - -
y* = Earth-out h(CS, CE) AOUT ¢E + 5 1 (3.3-8)
where Cg = projection of the unit Sun vector glAqnto the
spacecraft spin axis = cos B = 8I « QI

Cg = projection of the unit Earth vector ﬁI onto the
spacecraft spin axis = cos n = EI « (I

B = Sun angle, angle between the spin axis and
the Sun vector

n = Earth angle, angle between the spin axis and
the Earth vector

cos y = projection of the Sun vector on the Earth
vector
= ./§I
p = Earth angular radius
= sin~1 [(r + h{)/R]
r = Earth radius (km)
hy = IR tangent height (km)

3-8
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magnitude of the spacecraft position vector
(km)

y = sensor scan cone angle (deg)

R

Equation (3.3-6) does not uniquely determine ¢E; the sign

of the angle is not determined. To resolve this ambiguity
the sign of a vector product is used. Assume that the cos"l
function returns an angle in the range 0 < ¢E < 180.

AT Al a3i . .
If (U° x S°) e« E- > 0 then Equation (3.3-6) gives the cor-

rect range.

AT AT AT . .
If (U x S°) « E° < 0 then use the following equation,

_ o -1 ;cos Yy - COS n CoOS Bl
¢E = 360~ - cos l sin n sin B (3.3-9)

The measurement parameters, which the user may select as
either solved for or considered, for the IR horizon sensor

are
1. The scan cone angle (degqg)
2. The Earth angular radius (deg)
3. The distance from the Earth to the spacecraft (km)

4, The IR tangent height (km)

5. The Earth-in bias (deg)
6. The Earth-in scale factor
7. The amplitude of the Earth-in periodic measurement

error (deg)
8. The Earth-out bias (deg)
9. The Earth-out scale factor

10. The amplitude of the Earth-out periodic measurement

error (deg)
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12,

13.

14.

15.

16.

The Earth width bias (deg)

The Earth width scale factor

The amplitude of the Earth width periodic measure-

ment error (deg)

The

The Earth azimuth scale factor

Earth azimuth bias (deg)-

The amplitude of the Earth azimuth periodic meas-

urement error (deg)

In addition to specifying a name and uncertainty for each of

the measurement parameters designated as either solved for

or considered, the analyst must also provide the following:

1.

2.

The
The
The
The
The

The

initial sensor scan cone angle (deq)

incremental scan cone angle (deg)

minimum scan cone angle (deg)

maximum scan cone angle (deg)

IR tangent height (km)

frequency and phase angle

odic measurement error

The

frequency and phase angle

periodic measurement error

The

frequency and phase angle

periodic measurement error

The

frequency and phase angle

periodic measurement error .

of the

of the

of the

of the

Earth-in peri-

Earth-out

Earth width

Earth azimuth

When scheduling the IR horizon sensor the user may use one

or two of the sensor outputs for the error analysis computa-

tions.

Since all outputs have units of degrees, the user-

supplied value of the sensor white noise standard deviation
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for each measurement has units of degrees. The errors in the
Earth-in and Earth-out measurements are assumed to have equal
standard deviations Oa and to be uncorrelated with one
another. Then, it follows from Equations (3.3-7) and (3.3-8)
that the errors in the Earth-width and Earth azimuth measure-
ments are uncorrelated, and that their standard deviations

are

0¢E = oA/J7
(3.3-10)

Ng) T

%q

The correlations between the pairs (Q, AIN)' (Q, AOUT)’
(¢E, AIN)' and (9.,
selected.

AOUT) are ignored if any such pair 1s

Partial of the Earth azimuth wrt the projeéction of the Sun

vector S:

ad cos n - sin n cot B cos ¢E

E
BCS - sin n sin B sin ¢E (3.3-11)

Partial of the Earth azimuth wrt the projection of the Earth

ay
vector E:

ad cos B - cot n sin B cos ¢E

E
BCE - sin n sin B sin ¢E (3.3-12)

Partial of the Earth azimuth wrt the sensor scan cone angle:

= 0 (3.3-13)

3-11
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Partial of

Partial of

Partial of
spacecraft

Partial of

Partial of

6¢E

dk

the Earth

the Earth

the Earth
to Earth:

the Earth

the Earth

= h(CS, CE) = COS

azimuth wrt

% _
dp

azimuth wrt

azimuth wrt

2 .

3 =
azimuth wrt

-1 {co

the Earth angular radius:

0 (3.3-14)

the IR tangent height:

0 (3.3-15)

the distance from the

0 (3.3-16)
the bia;“b:

1 (3.3-17)
the scale factor k:

S Y — cos n cos BB (3

sin n sin B -3-18)

Partial of the Earth azimuth wrt the amplitude of the peri-

odic error:

0450
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5EE = sin (wt + y)
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Partial of the Earth width wrt the projection of the Sun

Pay
vector S:

Qs
r@]

|

=0 (3.3-20)

n

Partial of the Earth width wrt the projection of the Earth
vector E:

cos Yy - sin ¥y cos % cot n
ik _ 5 (3.3-21)

sin ¥ sin n sin %

>
o

@
(@]
(0]

Partial of the Earth width wrt the sensor: scan cone angle:

30 cos ¥ sin n cos % -~ sin-.y cos n
5— = 2 Q (3.3-22)
Y ‘ sin ¥ sin n sin 2

Partial of the Earth width wrt the Earth angular radius:

aa ., s10-0 (3.3-23)
dp . . .. Q
sin ¥y sin n sin

2

Partial of the Earth width wrt the IR tangent height:

aQ _ 80 |_1 A
3h, ~ 3p [R cos p} (3.3-24)

Partial of the Earth width wrt the distance from the space-
craft to Earth:

aa 3 tan p
3-13
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Partial of the Earth width wrt the

[ebR (e}
1
1
-

Partial of the Earth width wrt the

bias b:
(3.3-26)

scale factor k:

p — COS n COS ‘Yl

aa _ -1 fcos
3k =~ h(CS, CE) = 2 cos (

Partial of the Earth width wrt the
error:

3a = sin (wt

sin n sin ¥y (3.3-27)

amplitude of the periodic

+ ) (3.3-28)

Partial of the Earth-in angle wrt the projection of the Sun

N\
vector S:

3A ad

IN _
aC -~ ac

S

-y

(3.3-29)

Partial of the Earth-in angle wrt the projection of the

Earth vector ﬁ:

aAIN } 8¢E
8CE~ BCE

(3.3-30)

Partial of the Earth-in angle wrt the sensor scan cone angle:

aAIN

ay

N =

0450
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Partial of

Partial of

Partial of
spacecratt

Partial of

Partial of

Partial of

error:

0450

the Earth-in

the Earth-in

the Earth-in
to Earth:

the Earth-in

the Earth-in

aAIN

dk

angle wrt the

8Ary

a9
3

3ap

N -
el

angle wrt the

angle wrt the

angle wrt the

E

bias b:

scale factor k:

Earth angular radius:

(3.3-32)

‘IR tangent height:

(3.3-33)

distance from the

(3.3-34)

(3.3-35)

(3.3-36)

the Earth-in angle wrt the amplitude of periodic

= sin (wt + )

(3.3-37)



Partial of the Earth-out angle wrt the
vector §:

Poyr _ %
3Cg

Partial of the Earth-out angle wrt the
Earth vector E:

Boyr 3%

BCE ac

Partial of the Earth-out angle wrt the
angle:

Partial of the Earth-out angle wrt the

Mour 1 30
dp T2 3p

Partial of the Earth-out angle wrt the

Partial of the Earth-out angle wrt the
spacecraft to Earth:

3-16
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projection of the Sun

(3.3-38)

projection of the

+ %'——— (3.3-39)

(3.3-40)

Earth angular radius:

(3.3-41)

IR tangent height:

(3.3-42)

distance from the

(3.3-43)




N
I

Partial of the Earth-out angle wrt the bias b:

8Aqyr

db

=1 (3.3-44)
Partial of the Earth-out angle wrt the scale factor k:

325yt
ak

- & + % Q (3.3-45)

= h(CS, CE) E

Partial of the Earth-out angle wrt the amplitude of periodic

error.:

= sin (wt + y) (3.3-46)

3.3.2 V-SLIT STAR SENSOR MEASUREMENT MOBEL AND PARTIAL
DERIVATIVES
The V-slit star sensor contains two slits, one parallel to
the spin axis, the other at an oblique angle, as in Fig-
ure 3-3. The raw measurement is the time At between the
crossing of each slit by the star image focused by an op-
tical system. ADEAS uses as its preprocessed measurement y¥*
the rotation angle of the spacecraft between the star cross-
ings, given as wAt where w is the angular rotation rate of
the spacecraft. This measurement is a function of the cosine
of the star angle ¢ between the star vector §I and the

spin vector as

y* = M = rotation angle = h(Cs) (3.3-47)
- sin~ ! [tan (y - o) tan ] + A
3-17
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where Cg = projection of the unit Sun vect

SI onto the
spacecraft spin axis = cos 0 = .

or
81 « gI
o = star angle

v = mounting angle of the optical axis of the star
scanner

I = tilt of oblique slit
A = separation of center of slits, the angle between
the two lines perpendicular to the spin axis from
that axis to the intersections of the slits with
the plane scanned by the optical axis
Though this expression is exact only when the mounting angle
is 90 degrees and there is no rotation of the star scanner
about its optical axis, it is a good approximation when the

lengths of the slits are small, typically 10 degrees.

To determine the sensitivity of the measurement with respect
to a rotation of the slits about the optical axis, a differ-

ent measurement model is used.

y* = rotation angle = h(CS) = sin_l (tan (y - o) tan (L + ©)]

- sin~! [tan (y - ¢) tan 6] (3.3-48)

B + A -B
cos © (L - tan © tan L) cos ©

where © rotation of the slits about the optical axis

B angular distance between the optical axis and

the vertical slit

The last two terms of tﬁis model are based on plane geometry
(Figure 3-4).

The geometrical limitation on the visibility of the V-slit
star sensor requires that the star angle be between the min-

imum and maximum values of

o -y - % A (3.3-49)
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1 -
Onax = Y + 5 A (3.3-50)

where N\ is the length of the vertical slit.

The measurement parameters, which the user may select as
either solved for or considered, for the V-slit star sensor

are
1. The measurement bias (deg)
2. The measurement scale factor
3. The amplitude of the measurement periodic error
(deg)
4, The separation of the center of the slits (deg)

5. The tilt of the oblique slit (deg)

6. The rotation of the slits about the optical axis
= (deg) o

Even though the rotation of the slits about the optical axis
is always nominally 0 degrees, it may have a specified un-
certainty and hence be designated as an error parameter.

In addition to specifying a name and uncertainty for each of
the measurement parameters designated as either solved for
or considered, the analyst must also provide the following:

1. The frequency and phase angle of the periodic meas-
urement error

2. The separation of the center of the slits (degq)
3. The tilt of the oblique slit (deg)
4, The angular distance between the optical axis and

the vertical slit (deg)

5. The length of the vertical slit (deg)

0450



When scheduling the V-slit star scanner, the analyst does
not have a choice of measurements to use, since there is
only one. Since the rotation angle has units of degrees,
the sensor white noise standard deviation has units of
degrees.

Partial of the rotation angle M wrt the projection of the
star vector §;

M _ 1  aM
8CS ~ sin o 3y (3.3-51)

Partial of the rotation angle M wrt the separation of the
center of the slits:

M _
3A = 1 (3.3-52)

Partial of the rotation angle M wrt the tilt of the slit:

M _ tan (y - o) (3.3-53)

9L cos2 LI cos (M - A)

Partial of the rotation angle M wrt the mounting angle of
the optical axis:

M _ tan I . (3.3-54)

3y cos2 (Y - o) cos (M-A)

Partial of the rotation angle M wrt rotation of the slits
about the optical axis, from Equation (3.3-43):

aM

39 = (A - B) tan £ + tan (y - o) tan?

z (3.3-55)

0450
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in the limit © + 0 and vy - ¢ << 1.

Partial of the rotation angle M wrt the bias b:

il
=

=1 (3.3-56)

Partial of the rotation angle M wrt the scale factor k:

M

M ~h(cg) = A+ sin~! [tan (y - o) tan E]  (3.3-57)

g)
Partial of the rotation angle M wrt the amplitude of the

periodic error:

%g - sin (wt + ¥) (3.3-58)

3.3.3 V-SLIT SUN SENSOR MEASUREMENT MOI;I"J.L AND PARTIAL
DERIVATIVES
The V-slit Sun sensor contains two slits of equal length,
one parallel to the spin axis, the other at an oblique
angle, as in Figure 3-5, from which is determined the time
At between Sun crossings. ADEAS uses as its preprocessed
measurement y* the rotation angle of the spacecraft between
Sun crossings given as wAt where o is the angular rotation
rate of the spacecraft. This measurement is a functio? of
A
S

the cosine of the Sun angle B between the Sun vector and

the spin vector.

The rotation angle is given by

M = sin~! (cot B tan I) - sin~' (cot B tan ¥) + A (3.3-59)

3-23
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in the general case jllustrated in Figure 3-5. ADEAS only
models the special case of ¥ = O, in which case the measure-

ment equation is

y* = M = rotation angle = h(Cg) = sin—l (cot B tan L) + A
(3.3-60)

projection of the unit Sun vector SI onto the
spacecraft spin axis = cos B

I = tilt of the oblique slit

A = angle between the lines formed by the intersec-
tion of each slit with the x-¥y plane, the coor-
dinate frame being the spacecraft’s principal
axes, with the spin vector parallel to the z—-axis

where Cg

This is the same as the V-slit star sensor model, Equa-
tion (3.3-47), with y = /2 and o = B.

If the two slits have the same lengths, -as is assumed in
ADEAS, the slit with the greatest tilt (L) will define the
maximum and minimum B that.can be measured. Thus, the geo-
metrical limitation on the visibility of the V-slit Sun sen-
sor requires that the Sun angle B be between the minimum and

maximum values of

90 deg - sin-l (sin (A\/2) cos L) deg (3.3-61)

»
]

min

B 90 deg + sin‘l (sin (A/2) cos L) deg (3.3-62)

max

where \ is the length of the slits.

The measurement parameters, which the user may select as
either solved for or considered, for the V-slit Sun sensor

are
1. The measurement bias (deg)

2. The measurement scale factor

3-25
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3. The amplitude of the measurement periodic error

’ (deg)
4, The angle A between the lines formed by the inter-
section of each slit with the x-y plane (deg)
5. The tilt of the oblique slit (deg)
6. The tilt of the vertical slit (deg)
Note that even though the tilt of the vertical slit is
always nominally 0 degrees, it may have a specified uncer-
tainty and hence be designated as an error parameter.
In addition to specifying a name and uncertainty for each of
the measurement parameters designated as either solved for
or considered, the analyst must also provide the following:
1. The frequency and phase angle of the periodic
measurement error
2. The angle A between the lines formed by the inter- ey
section of each slit with the x-y plane (deg) Ql )

3. The tilt of the oblique slit (deg)
4. The length of the slits (deg)

When scheduling the V-slit Sun sensor, the analyst does not
have a choice of measurements to use, since there is only
one. Since the rotation angle has units of degrees, the
sensor white noise standard deviation has units of degrees.

Partial of the rotation angle M wrt the projection of the
’~

unit Sun vector'S:

oM _ tan I
aCs sin3 B cos (M - A)

(3.3-63)
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v
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Partial of the

Partial of the
slit:

Partial of the
slit:

Partial of the

Partial of the

oo
=
R

Partial of the

periodic error:

0450

rotation angle M wrt the angle between lines

- of slit intersection with the xy plane:

aM
3A

(3.3-64)

rotation angle M wrt the tilt of the tilted

)
=

_ cot B
L cos2 L cos (M - A)

(o]

(3.3-65)

rotation angle M wrt the tilt of the vertical

3y = -cot B

-y

rotation angle M wrt the bias b:

oo

s
1]
'—l

rotation angle M wrt the scale factor
h(CS) - A+ sin~t (cot B tan L)

rotation angle M wrt the amplitude of

5% = sin (wt + Y)

(3.3-66)

(3.3-67)

(3.3-68)

the

(3.3-69)
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SECTION 4 - THREE-AXIS STABILIZED SPACECRAFT MODELS

As Section 2 discussed estimation filtering in a general
sense, this section provides specific attitude and sensor
models for three-axis stabilized spacecraft. These models
provide the basis for the construction of the state transi-
tion, measurement partial derivative, and random excitation

matrices used in Section 2.

4.1 ATTITUDE GENERATION

For three-axis stabilized spacecraft, the attitude is defined
by the 3 x 3 orthogonal transformation matrix AB/R from some
reference coordinate system (see Section 5.1) to the space-
craft body coordinate system. The nominal spacecraft at-

titude Aé evolves over time based on the body components

/R

of the nominal spacecraft angular velocity relative to

YB/R

the reference coordinate system (see Section 16.1 of Refer-

ence 3):

AL p(t) = -85 p(t) Ag p(t) (4.1-1)
where Eé/R is the 3 x 3 antisymmetric matrix defined from
Wg,r PY:

0 ~g,Rz  “B/Ry
Y5,r = | “B/Rz 0 ~9B/Rx (4.1-2)

~95,rRy  YB/Rx 0

In addition, ADEAS models sinusoidal stabilization errors
about the nominal attitude:

AB/R(t) = ¢e(t) Aé/R(t) (4.1-3)

4-1
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where

2 ~

¢e(t) I Lgitll— [1 - cos lg(t)I] - —gitiT sin |E(t)|

(4.1-4)

and e is an antisymmetric matrix defined from a vector e
similar to Equation (4.1-2). The variation vector e is

given by

e; = a; sin [Ci (t - to) + Yi] i=1, 2, 3

(4.1-5)

where the amplitudes as, the frequencies Ci, and the phases

Y; are all constant. The attitude matrix

Ag,1 = Bg/r 2r/1

is used for all sensor model computations, where the

(4.1-6)

inertial-to-reference matrices AR/I for different reference

frames are found in Section 5.1.

For ADEAS, the nominal attitude Aé/R (t) is specified by an
initial attitude and a set of attitude rates. The initial
attitude Aé/R (to) may be specified by Euler angles or a
quaternion (see Reference 3, Section 12.1 and Appendix E).

The angular velocity Gé/R is specified between discrete times

ti in one of two ways. The first is as a set of constant

Euler angle rates, &, é, &. The Euler angles for

ti—l <t< ti are given by
$(t) = d(t; 1) + bi(t - o)
O(t) = O(t; ;) + ;(t - t; 1)
w(E) = wlty 1) + ¥t -t 1)

4-2
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If the initial attitude is specified by Euler angles and Eé/R
by Euler angle rates, the same Euler axis sequence is used
for both. If the initial attitude is specified by a
quaterion and Gé/R by Euler angle rates, the initial Euler
angles ¢(to), G(to), and w(to) are computed from the initial
attitude matrix Aé/R(to) using the equations in Table 4-1.
The correct quadrants for ¢ and y are determined by the fact
that the signs of the numerator and denominator of the argu-
ment of tan_l are the signs of the sine and cosine, respec-
tively, of the angle. If both the numerator and denominator
of the expression for tan ¢ are zero, ¢ is set to zero.

The second means of specifying Eé/R between the discrete times
ti is as a constant vector of components in the body frame.
When EélRis constant, the solution to Equation (4.1-1) is

By p(t) = &u(t, €5 1) Agp (&5 ) (4.1-8)

where Gé/R is constant for tj.1 < t < tj and

~' 2
w —
¢p(t, €5 ) ST+ i Iz [1 - cos |mé/R| (t - t5_ 1)1
B/R
“B/

- ] sin Imé/RI (t - t5_4)
B/R

4.2 DYNAMIC ERROR MODEL

Let AB/R be the true spacecraft attitude and Aﬁ/R be an es-
timate of the attitude. For all internal processing, ADEAS
represents the error in AalR by the first order error vec-
tor A6. The components of this vector represent the small
rotations needed about each of the spacecraft body axes to

0450



Table 4-1. Computation of Euler Angles From Attitude -
Matrix (1 of 3) —

i-i-k EULER ANGLES

-1
1-2-3 $ = tan [—A32/A33]

. =1
© = sin (A31)

tan-l [Al3 s%n ¢ + A,, cos ¢]
A23 sin ¢ + A22 cos ¢

1-3-2 é = tan [A23/A22:l

8 = sin (-A21)

-1 [Alz sin ¢ - A,, cos ¢ ]

y = tan ” :
A;, sin ¢ + A;, cos ¢ sy
-1
2-3-1 $ = tan ['A13/A11]
. =1
® = sin (Alz)
v~ tan-l A21 s?n ¢ + A23 cos ¢ ]
_531 sin ¢ + A33 cos ¢
2-1-3 ¢ = tan~t {a,. /A
31°°°33
-
S
@ = sin (1A32)
Y = tan" % I:A23 Su? b - 821 ©0° i J
—A13 sin ¢ + A11 cos ¢
AN
&
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Table 4-1. Computation of Euler Angles From Attitude
Matrix (2 of 3)
i-j-k EULER ANGLES
3-1-2 $ = tan‘l -A../A
2177722
6 = sin"t (A..)
23
v - tan—l A32 sin ¢ + A3l cos ¢
B Alz sin ¢ + A11 cos ¢
3-2-1 ¢ = tan~t [a /A
127711
0 = sin % (-A..)
13
v - can-1 Ay, sin ¢ - Ay, cos $
- —A21 sin ¢ + A22 cos ¢
1-2-1 6 = tan~} [A,./-A
[ 12 13
e = cos_1 (A ;)
11
v - can-l -A,; sin ¢ - Ay, cos $
A23 sin ¢ + A22 cos ¢
1-3-1 b = can~! [a,./a
137712

0450

8 = cos (All)

_1 [2,, sin ¢ + A, cos ¢]
-A32 sin 4 + A33 cos ¢




Table 4-1. Computation of Euler Angles From Attitude
Matrix (3 of 3)

i-j-k EULER ANGLES
2-1-2 ¢ = tan~t [AZI/Azs]
-1
9 = COS (Azz)
v - tan_l [—A33 sin ¢ + A31 cos ¢]
—A13 sin ¢ + A11 cos ¢
2-3-2 ¢ = tan?t [A23/—A21]

6 = cos (Azz)

_All sin ¢ - A13 cos ¢

y = tan : ]
[A3l sin ¢ + A33 cos ¢

-1
3-1-3 ¢ = tan [A3l/—A32]
_ -1
© = cos (A33)
v = tan~) -A,, §1n ¢ - A,; cos ¢]
Alz sin ¢ + All cos ¢
3-2-3 ¢ = tan t [A,./A
[32 34

® = cos (A33)

~1 [Ay; sin ¢ + A,, cos ¢]
-A,, sin ¢ + A,, cos ¢
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=

align them with the estimated body axes (see Figure 4-1).
The true and estimated attitudes are then related by

x
Ag/R

~ (I + A8) Ag o (4.2-1)
where the antisymmetric matrix A8 is defined similarly to
Equation (4.1-2).

4.2.1 ATTITUDE ERROR PARAMETERIZATION

While the error vector A8 is useful for internal computa-
tions, ADEAS provides two additional attitude error param-
eterizations for convenience of input and output: Euler
angle errors and quaternion errors.

Euler angle errors represent the difference in the Euler
angles between the Euler sequence rotating the reference
coordinate system to the true spacecraft body system and the
Euler sequence rotating the reference system to the estimated
body system. The explicit forms for the attitude matrix in
terms of the 12 possible Euler sequences are given in

Table E-1 of Reference 3. The relationship between the
attitude error vector and the Euler angle errors is analogous
to the relationship between the angular velocity vector and
the Euler angle rates. This analogy holds because the atti-
tude errors and the actual angular motion in an infinitesimal
time At are both infinitesimal. Therefore, the transforma-
tions between the components of the attitude error vector A8
and the Euler angle errors A¢, A8, Ay can be obtained from
the well known relations relating Euler angle rates and the
angular velocity components. The following table of trans-
formations (Table 4-2) for 12 different Euler sequences is
adapted from Reference 3.
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9497/83

Figure 4-1. Small Rotation From True Spacecraft Axes to
Estimated Spacecraft Axes
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The three columns of the inverse transformation matrix rep-
resent the axes of Euler rotations expressed in the orthog-
onal body axes. It should be noted that the adjacent columns
are orthogonal. Similarly, the adjacent rows of the trans-

formation matrix are orthogonal. The Euler angles ¢, O, and

y are derived from the attitude matrix Az /R by the transfor-
mations in Table 4-1.

The quaternion errors represent the difference in the qua-
ternion describing the rotation from the reference coordi-
nate system to the true spacecraft body system and the
quaternion describing the rotation from the reference system
to the estimated body system (Section 12.1 of Reference 3).
As in the case of Euler angle errors, the relationship to
the attitude error vector is analogous to the relationship
between the angular velocity and the quaternion rates.
Multiplying the dynamic equations of motion for quaternions
by At gives (see Section 16.1 of Reference 3)

[, - —
. Ael
Aq q q -q
2y _ % 3 4 1 86, (4.2-2)
Aq, Y q; q4 A6
Aq4_ —ql -qz _q3 3

where the quaternion q = (ql, 95/ 93/ q4) is derived from

the attitude matrix a computed as in Section 4.1.

B/R
As stated previously, the error vector A8 is used for inter-
nal computations. Thus, the a priori covariance of the at-
titude error parameters is always given by

=Y aT
Paattitude = E [Ae(to)Ae (to)] (4.2-3a)
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The assumption is made in ADEAS, however, that the initial
uncertainties in the parameters used for input and output
are uncorrelated. Thus, the form of the a priori covariance
of the attitude error parameters depends on which parameteri-

zation is used for input and output.

If the attitude error vector is used for input and output,
then

. [2 2 2
Ppattitude - 9329 ("e ,» Og_» 093) (4.2-3b)

If Euler angle errors are used for input and output, then

PAattitude

= B [diag (og, oé, ai)] BT (4.2-3c)

where B is the appropriate matrix from the last column of
Table 4-2.

The situation is more complicated if quaternion errors are
used for input and output since the quaternion errors are
not independent but must obey the normalization condition

gt aq =0 (4.2-3d)
Thus, we assume that the quaternion errors are given by

Agq

(I - 9 30)6q (4.2-3e)

where the components of §q are assumed to be independent so
that '

E[SEGET] = diag 02 ’ 02 ’ 02 ’ 02 (4.2-3f)
9Q° 93 93 Y

4-11
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With the AqQ given by Equation (4.2-3e), Equation (4.2-34)

is satisfied automatically.

It would be inconsistent with

Equation (4.2-3d) to assume that E[AEAET] had the form of

the right side of Equation (4.2-3f).

tions (4.2-2), (4.

Pprattitude

2-33) ’

T

= 4B d
q

Now we find from Equa-

(4.2-3e), and (4.2-3f) that

2

: 2
iag (c , 95 , o
[ Q3 9

(4.2-3qg)

if quaternion errors are used for input and output, where

Bq is the 4 x 3 matrix appearing in Equation (4.2-2).

4.2.2 ATTITUDE ERROR PROPAGATION

The true attitude

A relative to inertial space, given by

B/I

Equation (4.1-6), evolves according to

where

AB/I(t) = -G, (t) Ag, (t) (4.2-4)

gl

B

* Wp/1

€l

/1 ~ "B/R

(4.2-5)

is the angular velocity of the spacecraft relative to iner-
tial space, with ER/I being the angular velocity of the ref-

erence coordinate system.-

All angular velocity components

in Equation (4.2-5) are in body coordinates. Similarly, the

estimated attitude

0450

AX

B/I = PB/R Br/1

(4.2-6)
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evolves according to

A];/I(t) = -WE () Af 1 (B) (4.2-7)

where 55/1 is the column vector of angular velocity compo-

nents in the body coordinate system derived using the gyro-
scope measurement model (see Section 4.3.1).

From Equation (4.2-1) and using Equations (4.1-6), (4.2-1),
and (4.2-4) through (4.2-7) we have

4 ,3_ 4 T _4a_ . T
ac 49 = dt(AE/R AB/R) = dt(AE/I AB/I)
. T .
- Ax _ A + A%, A
B/1 PB/I B/1 PB/I (4.2-8)
= -w% . A%,y Ag,1 * Aj, 1 Pp/1 YB/I
= -B%,; A48 + 8wy, - By, + Y1
Let
Awg 1 = WE,1 T Yp/I (4.2-9)
and assume that AEB/I is small. Then, to first order
d 3. T A8+ 88w, - A (4.2-10a)
at B/I B/1 B/I .
Or, in vector form
AB(t) = By, () AB(E) — Bwg, (£) (4.2-10b)
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According to the gyroscope model of Section 4.3.1

dwp 1 (L)

= Ab(t) + Q(t) Ak - @, () Ae - Ee(t) (4.2-11)

where Ab is the gyro bias error (a first-order Markov proc-
ess), Ak is the gyro scale factor error, At is the gyro

alignment error vector, ﬁe

Q(t)

diag [GB,I(t)]

is a white noise process and

(4.2-12)

The attitude error A® is nominally zero and thus can be in-
cluded with AE, AE, and Ae in a composite state error vector

A6 |
Ab

Ak

LAe

(4.2-13)

Combining Equations (4.2-10), (4.2-11), and (4.3-22) then

gives the following state error equation:

AX(t) =

—wg, 1 (£)

0
0
0

-I

-1/
0
0

-Q(t)

0
0
0

~

YB/1

where ﬁb(t) is a white noise process.

0450
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0
0

(t)]

A;(t) +

ENCE
uy (t)
0

L o -
(4.2-14)
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4.2.3 TRANSITION MATRIX COMPUTATION

Integrating Equation (4.2-14) then gives for the state tran-
sition matrix, as defined by Equation (2.1-5)

Cdp(t: ) 1 dgp(ts £1) 1 dgults €1) 1T - $gg(t: t1)]
] ! ]
o b (E, £') 0 ] o)
S(E, t') = | —mmmmmmmmm - A R | ommmemmmmmmme
o ___ Vo9 ____ T SR I o ______
L o i o i o i I _
(4.2-15)
where
dgglt, t') = -wg,(t) dgglt, t1) (4.2-16)

bgplt, £') = “dg () dgp(t, £') - Te —(E-t") /Ty 217

bgplts £') = -0, (£) bge(t, t) - ) (4.2-18)

bpp(ts £1) = re-(t-th)/x (4.2-19)

This partitioning of the transition matrix is different from
the partitioning of Equation (2.2-1d); the two partitionings
are related by row and column interchanges, depending on the
selection of dynamic solve-for and consider parameters.

Now Equation (4.2-16) has an identical form as Egqua-
tion (4.2-4) for the attitude AB/I'- Thus, ¢66 must also

act as a transition matrix for AB/I'

AB/I(t) = ¢ee(t, t*) AB/I(t') (4.2-20)
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or

' T ‘
¢ee(t, t') = AB/I(t) AB/I(t ) (4.2-21)

Given a solution for ¢9€’ Equations (4.2-17) and (4.2-18)
can be integrated to give

t
bgpt, t') = -/ bgott, t) e (ETTE/T qpn (4.2-22)
t.
£
o (t, t') = -/ bgglt, t7) Q(t") 4t (4.2-23)

t )

Substituting Equation (4.2-21) into these gives

'y = T " -(t"-t')s " ~
(o
(4.2-24)
T '
t
' - T " " "
¢ek(t, t') = -AB/I(t) AB/I(t ) Q(t") dt
(R
(4.2-25)
T '
= —AB/I(t) Ak(t, t")
Cﬁﬁ
4-16
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where

t

Ab(t, £') EJ/r AB/I(t') e
t [ ]

t
Ak(t' t*) EJ/f Q(t") AB/I(t") at”
t ]

-(t -t )/ at"

(4.2-26)

(4.2-27)

Over a small interval At such that IEB/II At << 1, the tran-
sition matrix ¢99 can be approximated, to first order in

ImB/Il At, by

~

e /T ~ 1 _ At/

Assuming also that At/t << 1, then, to first order:

(4.2-28)

(4.2-29)

Using Equations (4.2-28) and (4.2-29) in Equation (4.2-22)

gives

t
= - L -t ¢+ AL -
dgplts t - at) = - (1 - Gy, ()L ~ ¢ ))(1 - - )dt

t-at

t
= - / [(1 - ﬂ—‘—g—*—“ 1)- Sy, (0N - t')] at-

- -1ae s 3 [ﬁ I+ &‘B/I(t)] at?

Note that this result is still first order in laB/I‘

(4.2-30)

At and

At/t even though it is second order in At. Using Equa-

tions (4.2-28) and (4.2-29) again gives

1

dop(t, t - AE) = - 7 At [xe‘“” + bgglt, t - At)] (4.2-31)

2

4-17
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Or, by Equation (4.2-21)

~ _ 1 T -At/T
dgp(ts, t - At) = - 5 At AB/I(t)[AB/I(t) e

(4.2-32)
T
+ AB/I(t - Atﬂ

Then, from Equation (4.2-24)

~ 1 -At/T _ ]
A (t, t - At) = 5 At [AB/I(t) + Ag,r(t - At)

(4.2-33)

Substituting Equation (4.2-28) into Equation (4.2-23), and
taking Q to be approximately constant over the interval At,
gives

t

Poplt. t - At) = __J/r [ - EB/I(t)(t - 91 (t) at”
t-At

(4.2-34)

~ —{IAt - % Wy, () Atz] Qo (t)

where we have written Qave(t) to emphasize that this is

really the average Q over the time interval from t - At to t.

Using Equations (4.2-28) and (4.2-21) then gives

.~ - X
¢ek(t, t - At) = - 2[I + ¢ee(t, t - At)] Qave(t) At

- 3 Ag,(®) [Ag/z(t) (4.2-35)

T
+ AB/I(t - At)] Qave(t) At

o
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Then, from Equation (4.2-25)
~ 1 - -
Ak(t, t - At) 5 Qave(t) At[AB/I(t) + AB/I(t At)]l (4.2-36)

In many cases, it is necessary to propagate the covariance
over an interval t - t' that is large enough so that either
or both of Equations (4.2-28) and (4.2-29) would be violated
for At = t - t'. In this case, the full interval is broken

up into n equal steps of length:

At = (£ - t')/n (4.2-37)

where n = 1 + TRUNC{max[|p(t., t')|, (£ - t*)/T1/8}  (4.2-38)

§ is a user-specified tolerance, TRUNC is the truncation
function, i.e., TRUNC(x) is the largest integer less than or
equal to x, and p(t, t') is the net rotation of the space-
craft with respect to inertial space between times t' and t.
If gyro biases are neither solved-for nor considered, 1l/7

is set to zero, so that it does not affect the number of
steps. Equations (4.2-37) and (4.2-38) then guarantee that

max( |® |- At, At/T) < 6 (4.2-39)

ave

where the average angular velocity aave is related to
the total rotation by

plt, t') = o (t - t") (4.2-40)
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The vector p(t, t') is computed by using Equation (4.2-40)
and the analogs of Equations (4.1-7) and (4.1-8) for rota-
tions with respect to inertial space, which give

13134_;_11_
Ag,r(t) A ,(t) =TI+ 5[1 - cos le(t, )11

lpct, t)]?
(4.2-41)
Y GV L0 T b :
- == sin |p(t, t*)]
lp(t, t*)]
The trace of this equation gives
- » - -1 .l T u] - .]_-
[p(t,t")| = cos {2 tr [AB/I(t) Ag,r (E%) 2} (4.2-42)

Note that |p(t,t')| represents the rotation through the
smallest angle connecting the initial and final attitudes,
rather than the actual rotation performed in a maneuver.
For a complex maneuver, it may be that Iaavel At <<

lwlave At > 8.

The computations used in ADEAS will be accurate if either a
measurement or an output is processed between different arcs
of a complex maneuver.

The matrix Qave(t) At, which is needed in Equation (4.2-36),

is given, using Equation (4.2-12), by

Q_,o(t) At = diaglw, ,.(t) At] (4.2-43)

B/I

where BB/I(t) means the average angular velocity from t - At
to t.
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The nonzero elements of Qave(t)At are numerically equal to
three of the elements of the antisymmetric matrix GB/I(t)At,

which can be computed from AB/I(t) and AB/I(t - At) by taking

half of the antisymmetric part of Equation (4.2-41) with
t' = t - At:

T T }
3 [“a/x(t - At)AT (t) - g, p(t) A p(t Atﬂ

~

- T% sin |p(t.t - AE)] (4.2-44)

=~ f(t,t - At) = GB/I(t)At

The approximation is valid if |p(t.,t - At)| is small

enough so that [p(t,t - At)| =~ sin |p(t,t - at) |,

which is guaranteed by the choice of § to be at least as good
as other approximations made in the dynamic analysis.

Now the integrals for Ab and Ak in Equations (4.2-26) and
(4.2-27) can be approximated by the sum of the corresponding
values over each of the intervals At, as given by Equa-
tions (4.2-33) and (4.2-36). Thus, letting ti = t' + 1At:

n-1
o\ 2 : -iAt/x
Ab(t' t') = e Ab(ti-f-l' ti)
i=0
n-1
1 -iAt/T -At/T
3 At Z e [Aa/x(ti+1) e + AB/I(ti):I
i=0
(4.2-45)
- l ] _nAt/T
= At 2 [AB/I (e') + AB/I(t)e }
n-1
-iAt/T
+ Z Ag,r(tjde
i=1
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n-1
Ap(e, t') = }E: Aty &)
' i=0

(4.2-46)

n-1

~ L

=3 }E: Qve (Ei41) 8tlAg p(t; 1) + Ag 1 (t))]
i=0

The transition matrices ¢eb(t, t') and ¢ek(t, t')
can then be computed using Equations (4.2-24) and (4.2-25).

Since the submatrix ¢ee(t, t') is seen from Equa-
tion (4.2-21) to be orthogonal, the inverse of the full
state transition matrix is given by

[aZce, v | alce, v boptt. ) aplce, ey | aloce. ) aguces by |1 - algce. o0
e, vy - ° ol vy o ° (4.2-47)
o o 1 0
L o o -] I J
where
¢gé(t, £') = 1elt-t)/T (4.2-48)
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4.2.4 RANDOM EXCITATION COVARIANCE MATRIX COMPUTATION

Defining G as in Equation (2.1-6), then, based on Equa-
tions (4.2-14) and (4.2-15), the random excitation matrix is

a(t, t') = E[¥(t, t') ¥o(t, t*)]
t
=/ (t, £7) @ $T(t; £7) at”
vt
(4.2-49)
—dee(t, t') i dgp(t, t*) r_gw 0]
|
- dgb(t, £) | dpplt, £} 0 r 0
, o
0 | 0 0! o
- g I
L 0 ' 0 0 0 _
]
where
t
dgg(ts t") =J/f [?ee(t, £%) Qg dgglts t")
t'
(4.2-50)

b bgp(t, t0) o #% (t, £1)] atr

t
dg,(t, t*) =¢/[ bop(ts t") @y & (t, t") at"  (4.2-51)
t ]

t
dppts %) =J/f b plt, t7) Qy bpp(t, t7) dt” (4.2-52)
t ]
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with

-

Note that this partitioning of
titioning of Equation (2.2-13).

£[ug(t) ug(t")]

o —T \ 7
E_ub(t) ub(t l

-

d

Qe §(t - t*)

Qb §(t - t')

(4.2-53)

(4.2-54)

is different from the par-

The two partitionings are

related by row and column interchanges, depending on the
selection of dynamic solve-for and consider parameters.

Substituting Equations (4.2-19), (4.2-21), and (4.2-24) into

Equations (4.2-50), (4.2-51),

dee(t, t') =
deb(tl tl) =
% <[l - e—2(t—t')/t
d,..(t, t') =
bb '
where

t

and (4.2-52) gives

A, (t) din(t, t') AL _(t)
B/I ee' B/I
-Ag,p(t) dgp(t, t*)

] Qb. if 1/t £ 0

, 1f 1/7T

' ] = T " "
dgg(t, t') = J/f [AB/I<t ) Qg Ag, (")
b :

T " " "
+ Ab(t, t") Qb Ab(t, t )] dt

0450
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(4.2-56)

(4.2-57)

(4.2-58)
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t
ag,(t, t') = J/f Ag(t, gny e (E-ET)/T Q, at" (4.2-59)
t.

Over a small interval At, with IEB/II At << 1 and At/T << 1,
we can use the first order approximations of Equa-
tions (4.2-28) and (4.2-30) in Equation (4.2-50) to obtain

t
dgglt, t - AE) 'z,/ {Qe + [Qg Bg,q(t) - wp, () Qgl(t - €1
t-At

[ 2 l ~
~ 3
1 'y 3 '
- 2ot - t) } dt
1 ~ ~ 2
= Qg At + 31Qg G, p(E) - wg,r(E) Qgl AL
1

+§QbAt

3 1 ~ ~ 4
+ gloy Bg,(t) - By, () Q] At

at?

- 9 4x

z%’At[Qe + dgglt, t - At) Qg ¢ge(t, t - At)

v Lo at)? + % bt € - 8) Oy dgplts £ - at)
(4.2-60)
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Substituting Equations (4.2-21) and (4.2-24) into this gives

~ X T
dgglt, t - At) =5 At AB/I(t)[AB/I(t) Qg Ag/1(®)

T
+ AB/I(t - At) Qe AB/I(t - At)

1,T (4.2-61)
+ 6 Ppsr(t) 9 B/I<t)(At)
1 AT
AL(t, t - At) Q AL(t, t - At)] AL ()
Then, from Equation (4.2-55)
dr(t, t - At) = L at [}T (t) Q. A.,.(t)
oot 2 B/I o Pp/1
T
+ AL _(t - At) Qg Ag . (t - At)
(4.2-62)

l T
$ AL 1 (£) Q Ay, (t)(at)?

1

T
+ 5 Ab(t, t - At) Qb Ab(t, t - At)]
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Using the approximations of Equations (4.2-29) and (4.2-30)

in Equation (4.2-51) gives

deb(t, t - At) =~ {—I(t -t
-At

+ EB/I(t)](t -

t
_ [ {—I(t -t
-At

+ mB/I(t)](t - t')Z; Q, dt’

2

u

3

{— L I At2 + %

-1t [%-1 At - bgy(t, £ - At) e

Substituting Equation (4.2-24) into this gives

1 1,T
deb(t, t - At) = - 3 At AB/I(t)[2 AB/I(t) At

+ Ag(t, t - At) e

Then, from Equation (4.2-56),

v ~ _1_
deb(t' t - At) = 3 At[2

+ Ag(t, t - At) e

0450
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-At/T
Jos

T

ps1{t) At

-At/t
J e,

(4.2-63)

3 ~ 3
[t I + wB/I(t)] At i Qb

-At/t
o

(4.2-64)

(4.2-65)



ST
We divide the time interval from t' to t into n subintervals c
of length At = (t - t£')/n as before. Then, from Equa-
tions (2.1-8) and (2.2-13), with ti = t' + iAt

da(t t') = o(t ti) + d(t ti)

(4.2-66)

i+l’ i+’ i+l’

. T
"y €) dlty, ) #TCE

or, using the partitioning of Equations (4.2-15) and (4.2-49)

’ _ . T
dgglti,1r t') = bgglty i/ ty) dgglly, t') dga(t; 4. t;)

N I
+ bgelt t5) dgplty, t7) dgpltyLys t5)

i+1’

T . T
+ bgpltirr t3) dgplty, 1) dga(ty 40 t))

. T
* Pop(i1r £5) dppltyr £7) dgplty,y. £5)

+ dggltsgr ty) ' (4.2-67) ~

t')

dop(tiey- bogltiyrr t5) dgplty, t1) dpp(t; 0 ty)

+ dgp(t £i) dppltys £') dpp(t t;)

(4.2-68)

i+l’ i+l’

+ dgpltiyr &)
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Substituting Equations (4.2-19), (4.2-21), (4.2-24),
(4.2-55), and (4.2-56) into these gives

dhglty, g £') = dggltys t7) + dgplty, 1) Aty g0 ty)
T T
+ AT(E, ., £.) dh (t., £Y)
b i+l i eb' "1 (4.2-69)
+ Al (t £.) d., (t., t') A (t £.)
p{tis1r Ti) %pp'ti p{tis1r 4
+ A5ty g0 &)
T -At/T
dgp(ti,1r t1) = dgplty, £1) + Ap(t; . &) dpp(t;, t7) e
(4.2-70)
+ A4ty g ty)
s The matrices dée(t, t') and déb(t, t') can be computed by re-

o cursively applying Equations (4.2-69) and (4.2-70), starting
from zero and using Equations (4.2-33), (4.2-57), (4.2-62),
and (4.2-65) at each step. The matrices dee(t, t') and
deb(t, t') can then be computed using Equations (4.2-55)
and (4.2-56).

4.3 SENSOR MODELS

The three-axis sensor modeled by ADEAS are

Gyroscopes

IR horizon sensor
Three-axis magnetometer
Fixed-head star tracker
Gimbaled star tracker
Digital Sun sensor
Analog Sun sensor

Gimbaled Sun sensor
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For the three-axis stabilized spacecraft, ADEAS models the
measurement function h(X, p') of Equation (2.1-13) in the

following way:

where RS

h

n(x, p') = h(R

unit vector,

sensed object

(4.3-1)

expressed in sensor coordinates,
representing the known direction of an externally

sensor-specific function of the unit vector ﬁS

The functional dependence of the measurement on the space-
craft attitude and sensor alignment is through the unit ref-

AS
erence vector R .

Let A® be the vector of small rotation

angles representing the spacecraft attitude errors, and let
¢ be the vector of small rotation angles representing the
The following equations assume

sensor alignment errors.
that A6 and 3 are expressed in radians.
set of the solved-for vector, whereas the analyst may des-

AB is always a sub-

ignate any component(s) of ; to be either solved for,

considered,

or ignored.

The partial derivatives of the

measurements with respect to 46 and ¢ are given as

as
dy* _ ah_ 3R
3a8  oRS a8
ay* _ 3h 3R>
—_ AS -_—
3d 3R 3¢

(4.3-2)

(4.3-3)

~ .
ah/BRS is sensor and model dependent and is described for

each of the three-axis sensors in the subsequent sections;
aﬁs/aAé and 8ﬁ5/5$ are derived below.
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The unit reference vector in sensor coordinates can be ex-

pressed as

RS = [A A R = [a RP 4.3-4
R” = [Ag,pllAg, 1] R* = [RAg/p) (4.3-4)
where ﬁs = the unit reference vector expressed in sensor
coordinates
[Ag/p] = the body-to-sensor rotation matrix
[Ag,1] = the inertial-to-body rotation matrix
ﬁI = the unit reference vector expressed in GCI
coordinates
7\
RB = the unit reference vector expressed in body

frame coordinates

The sensor alignment errors $ are errors in [AS/B]' and the
spacecraft attitude errors AB® are errors in [AB/I]. Thus,

0450



considering only small errors in the attitude and sensor

A\

alignments, the error in Rs can be expressed as

0 ¢z —¢Y
AS Al
AR"=  |-¢, 0 é; |[As, gl [Ag,1] R
¢Y —4>x 0
0 Aez —AGY
o_|a,,.1 RE
+ [Ag gl [-28 0 A8 | [Ag,;
AS —Aex 0
0 ¢z —¢Y 0 AD
S
= —¢z 0 ¢x R"+ [AS/B] —Aez 0
¢Y _¢x AGY —Aex
B S s| B B
0 -R, R, ¢ 0 -R,
i S S B
= Rz 0 —Rx ¢Y + [AS/B] Rz 0
S S B B
L_-RY R, 0 | , _:Ry R_
The necessary partials are then
— B B | [
0 -R, Ry 0
A Fal
aRS _ (a...1| rB 0 _RB aR® _ RS
= S/B b4 X T z
A8 ad
-gB rB 0 -rS
LY x . s
4-32
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(4.3-5)
-AB
Y
A6 RB
X
0
B—— —
Ry | | 26,
B
—Rx AGY
0 A6
Z
-rS RS
z Y
0 -gS
X
S
R> 0
(4.3-6)




7

The partial derivatives 8h/6§s in Equations (4.3-2) and
(4.3-3) are evaluated assuming that the components of ﬁs can
be independently varied. This is not strictly true because
of the unit vector constraint Iﬁsl = 1; this constraint also
allows us alternate ways of expressing functions of‘ﬁs, for

instance

Any resulting ambiguity in the partlal derlvatlves ah/aR is
eliminated upon mu1t1p11cat10n by 8R /BAG or R /8¢, so the
partial derivatives ay/aAe and 8y/6¢ are unambiguous. The
evaluation of aﬁS/BAé is always performed because the atti-
tude error vector is always a subset of the solved-for vec-
tor, whereas aﬁS/a$ is computed only when one or more of the
sensor alignment angles have been designated as solved for
or considered. The formulation of h and its partial deriva-
tives with respect to ﬁs is thus a key to the sensor-related
error analysis computations. The expressions for h(ﬁs, p')
and a complete list of all partial derivatives for each

sensor are given below.

For all sensors the sensor boresight is along the Z-axis of
the sensor coordinate frame.

4.3.1 GYROSCOPES

Gyroscopes are modeled very differently from other sensors
in ADEAS since gyroscope errors are regarded as part of the
dynamic error model, as discussed in Section 4.2, rather
than as measurement errors. Another major difference is
that gyroscope data are assumed to be continuously available
for attitude propagation, rather than being scheduled like
other measurements. These differences can be summarized by
saying that gyroscope data are used in a "model replacement"
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mode since they replace a full dynamic model of the space-
craft motion incorporating environmental and control torques.

Thus, in distinction to other sensor models, no measurement
function h(x, p') will be derived for gyros. Rather, this
section will provide a derivation of Equations (4.2-11)
through (4.2-14).

The raw gyro measurement wg is assumed to be related to

the spacecraft angular velocity BB/I by

w. = M(w - b - Ee) (4.3-7)

S

where M is a matrix incorporating gyroscope alignments and
scale factors, B is a vector of gyro biases, and Ee(t) is a
white noise process. These quantities are not perfectly
known, so the attitude determination is based on these meas-
urements using a model

w. = M*(wX,_ - b¥) (4.3-8)

S B/1

where M* and b* contain estimates of the alignments, scale
factors, and biases. Thus, the estimate of the spacecraft
angular velocity is

wr _ = ML Ml

B/T b - ue] + b* (4.3-9)

The matrix M*_l M can be written as the sum of a symmetric
and an antisymmetric matrix.

M* " M = K + AF (4.3-10)
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where K is symmetric and AT is skew-symmetric. It is assumed
that M* is a good estimate of M; so K is close to the iden-
tity matriz, and AT is small. If K = I, the matrix I + AT
represents a small rotation given by a rotation vector A€,
the vector of gyro alignment errors. In the general case,

we assume that A€ has this interpretation and that

K = I + diag[ak]l = I + diaglak,, Bk, Ak,] (4.3-11)

where Ak is a vector of gyro scale factor errors. Nonzero
off-diagonal elements of K would represent either higher-
order effects in Ae, which are negligible, or shear-type
misalignments of the gyro input axzes (as opposed to the rigid
misalignment of all input axes represented by At), which we

assume not to be present.

Inserting Equations (4.3-10) and (4.3-11) into Equa—
tion (4.3.9), and neglecting terms of order Akb Akue
Agb, and Aeue gives

“E/I = {I + diag[Ak] + AE} wp,r t+ b* - b - ug (4.3-12)

With Equation (4.2-9) written as

AmB/I = wg/I - g,y (4.3-13)
and with
Ab = b* - b (4.3-14)
4-35
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and

Q= dlag[wB/I] (4.3-15)
this can be written
AmB/I = Ab + Q Ak - ©p /1 Ae - Ug (4.3-16)

which is identical to Equation (4.2-11).

The remaining task is to specify the time dependence of the
gyro biases, scale factors, and misalignments. The scale
factor vector Ak and the misalignment vector Ae are assumed
to be constant, as reflected in Equation (4.2-14). The bias,
however, is assumed to obey the differential equation

(4.3-17)

where Tt is a correlation time and Gb(t) is another white
noise process. The processes ﬁe(t) and ﬁb(t) are assumed
to be independent so that

E[Ge(t) Gg(t-)] = Qg 8(t - t*) (4.3-18)
E{Gb(t) Eg(t')J = Q, 8(t - t') (4.3-19)
[Bete) e
E[ug(t) up(t ﬂ =0 (4.3-20)
4-36
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Equations (4.3-18) and (4.3-19) are identical to Equa-
tions (4.2-53) and (4.2-54). The bias estimate obeys

b* = -b*/t (4.3-21)

with the same correlation time as b. Thus, Ab obeys the

equation

Ab = -Ab/T + Gb (4.3-22)

which is used in Equation (4.2-14).

4.3.2 IR HORIZON SENSOR MEASUREMENT MODEL AND PARTIAL
DERIVATIVES

The measurement model for the IR horizon sensor is shown in
S

Figqures 4-2 and 4-3, where the reference unit vector % is
the Earth vector expressed in sensor coordinates. The out-
puts of the IR horizon sensor are the Earth-in azimuth,
Earth-out azimuth, Earth width, and Earth azimuth. Each
azimuth is measured with respect to a user-defined, fixed-
reference azimuth expressed in degrees from the X-axis of

the sensor frame. The Earth vector in sensor coordinates is

given by
_ES_
X sin n cos.(¢E + ¢0)
25 - |ES| = |sin n sin (O, + @) (4.3-23)
y E 0 '
cos n
ES X
e z-i
where cos n = ﬁs . ES = Ei and

sin n = /l - cos2